Germline Cancer Testing Challenges: Assessing Cancer Risk and PARP Inhibitor Response

Karla Bowles, PhD, FACMG

- Participants should be able to describe examples of genetic testing technical challenges which may affect the accuracy of test results.
- Participants should gain a basic understanding of robust and novel approaches to genetic variant classification.
- Participants should be able to describe how HRD analysis and genetic testing can be used to appropriately identify patients who may respond to PARP inhibitors.

Tests offered by Myriad Genetics

Myriad myRisk[®] Hereditary Cancer is a multigene panel that analyzes clinicallysignificant genes across a number of hereditary cancer syndromes, with a focus on eight primary cancer sites.

Myriad myPath® Melanoma is a unique molecular diagnostic test that analyzes 23 genes to differentiate benign nevi from malignant melanoma.

Myriad myPlan[®] Lung Cancer is a molecular diagnostic test that measures the expression levels of cell cycle progression genes to provide an accurate assessment of cancer aggressiveness in early-stage non-small cell lung cancer.

Prolaris[®] is a molecular diagnostic test that measures the expression level of genes involved with tumor proliferation to predict disease outcome. Prolaris can be used in conjunction with other clinical parameters to determine prostate cancer aggressiveness. EndoPredict[®]

EndoPredict[®] is a diagnostic test that accurately determines the likelihood of cancer recurrence 10 years after diagnosis, allowing physicians to determine which patients can safely forgo chemotherapy. BRACAnalysis CDx[®]

BRACAnalysis CDx[®] is an FDA-approved companion diagnostic test to identify germline *BRCA1* and *BRCA2* mutations and is intended to be used as an aid in treatment decision making for LynparzaTM (olaparib), a PARP inhibitor.

my Choice

Myriad myChoice® HRD is a molecular diagnostic test that measures a tumor's ability to repair DNA damage by assessing tumor *BRCA1/2* status and three blomarkers of homologous recombination deficiency. myChoice HRD can help identify patients who are most likely to benefit from cancer therapies that damage DNA.

Myriad is Committed to Patients and Providers Throughout the Entire Testing Process

Pre-Testing Support

- Provider education
- Customized risk assessment tools
- Lean management experts
- Electronic test requisition forms
- Financial assistance

State of the Art Variant Identification

- Sequencing variants
- Large rearrangements
- Unusual Cases

State of the Art Variant Interpretation

- Classification of novel variants
- Reclassification of Uncertain Variants (VUS)
- Lifetime commitment to patients

Post-Testing Support

- Genetic counselors available to answer patient and provider questions
- myRisk Medical Management Tool

Analytical and Interpretive Accuracy Affect Patient Medical Management and Outcomes

Analytical Accuracy Did the Lab Find All of the Variants (DNA Changes)?

- False negative: A pathogenic mutation was missed
- False positive: The lab reported a pathogenic mutation that was not actually present

Interpretive Accuracy Did the Lab Correctly Classify the Variants as Pathogenic or Benign

- False negative: A pathogenic variant is classified and
 reported as benign
- False positive: A benign variant is classified and reported as pathogenic

Overall Accuracy Will the Test Result Correctly Inform Medical Management?

- False negative: A pathogenic
 variant is not reported <u>or</u>
 mistakenly reported as benign
- False positive: A pathogenic variant, which is not actually present, is reported <u>or</u> a benign variant is classified and reported as pathogenic

We Use State-of-the-Art Analytical Technologies For Typical Patients

		High Sensitivity	High Specificity
		Primary Technologies Detect Variants	Orthogonal Technologies Confirm Variants
Variant Type	Sequencing	Next Generation Sequencing (NGS) – 50X Minimum Depth of Coverage	Sanger Sequencing
	Large Rearrangement	Dosage NGS	Targeted Microarray MLPA Long Range PCR

Our Unusual Cases Team Custom Designs Assays for Your Rare and Challenging Patients

Lab Directors Oversee test result quality and accuracy

Genetic Counselors

Communicate with patients and providers

PhD-Level Scientists

Investigate biological mechanisms Data Analysts Provide expert data review

Technical Development

Develop and validate all assays

Mosaicism Results When a Mutation Arises After Conception. The Mutation is Only Present in Some Tissues.

Mosaicism Can Lead to Unexpected Test Results (Especially for *TP53*)

Patients who inherit *TP53* mutations have Li-Fraumeni syndrome

Mosaic (acquired) *TP53* mutations do not cause Li-Fraumeni syndrome. The patient is not at risk for most Li-Fraumeni associated cancers, if the mutation is confined to blood.

Analytical Data

- Blood 70% of sequences are normal and 30% have the mutation
- Cultured fibroblasts Confirms <50% mutant sequence

Most Likely Interpretation

• Patient is mosaic – Medical management should be customized to the patient

Proband (in pink) has a *TP53* mutation but family history does not look like Li-Fraumeni syndrome

There is an Increased Probability of Identifying Likely Somatic Variants in Older Individuals

Myriad Takes a Customized Approach to *TP53* Testing and Reporting

- Frontline NGS testing cannot distinguish between inherited and acquired mosaic mutations, which is critical for patient care
- Myriad customizes its reporting and follow-up testing processes

Initial Patient Report: *TP53* "Special Interpretation" Variant

- All *TP53* pathogenic mutations are reported
- Mutations are classified as "Special Interpretation"
- A Genetic Counselor Calls the provider to discuss the interpretation

Myriad Offers Free Family Member and Fibroblast Testing

- Found in family member: Most likely inherited
- Found in fibroblasts: Present in multiple tissues (patient is most likely high risk)

Myriad Issues Amended Report

- Summarizes testing
 performed
 - Provides additional clinical interpretation, if appropriate

Targeted Microarray May Identify Mosaic Large Rearrangements

Some Mosaic Mutations May Not Be Harmless

BRCA2 Deleted but Potentially Mosaic – Blood Sample

BRCA2 Not Deleted – Fibroblast Sample

This Patient Had an Undiagnosed CLL

Myriad provides accurate test results for common and uncommon patients.

Rare patients are common

Individually rare patients are common as a group

Other labs

Your uncommon patients may receive wrong or inconclusive test results if labs do not customize testing.

Myriad

We customize testing so that your uncommon patients receive accurate test results and appropriate medical management.

Analytical and Interpretive Accuracy Affect Patient Medical Management and Outcomes

Analytical Accuracy Did the Lab Find All of the Variants (DNA Changes)?

- False negative: A pathogenic mutation was missed
- False positive: The lab reported a pathogenic mutation that was not actually present

Interpretive Accuracy Did the Lab Correctly Classify the Variants as Pathogenic or Benign

- False negative: A pathogenic variant is classified and
 reported as benign
- False positive: A benign variant is classified and reported as pathogenic

Overall Accuracy Will the Test Result Correctly Inform Medical Management?

- False negative: A pathogenic
 variant is not reported <u>or</u>
 mistakenly reported as benign
- False positive: A pathogenic variant, which is not actually present, is reported <u>or</u> a benign variant is classified and reported as pathogenic

Myriad is Committed to Patients and Providers Throughout the Entire Testing Process

Pre-Testing Support

- Provider education
- Customized risk assessment tools
- Lean management experts
- Electronic test requisition forms
- Financial assistance

State of the Art Variant Identification

- Sequencing variants
- Large rearrangements
- Unusual Cases

State of the Art Variant Interpretation

- Classification of novel variants
- Reclassification of Uncertain Variants (VUS)
- Lifetime commitment to patients

Post-Testing Support

- Genetic counselors available to answer patient and provider questions
- myRisk Medical Management Tool

Discordant Variant Classifications are Common Between Laboratories

Balmana *et al.*, Conflicting Interpretation of Genetic Variants and Cancer Risk by Commercial Laboratories as Assessed by the Prospective Registry of Multiplex Testing. *Journal of Clinical Oncology* 2016; 34(34):4071-78.

INDICATION DE TESTER ET RECOMMANDATIONS DE SUIVI Our ASSOCIÉES AVEC CHAQUE CLASSE DE VARIANTS - *IARC*

RÉSULTAT	Classe	Indication de tester apparentés en clinique	Recommandations de suivi	Tester apparentés pour la recherche*	Probabilité d'être pathogène
POSITIVE FOR A DELETERIOUS MUTATION or Variant with clinical significance	5	Tester apparentés	Suivre les lignes directrices de surveillance pour personnes à risque	Non indiqué	IARC: > 99%
GENETIC VARIANT, SUSPECTED DELETERIOUS	4	Tester apparentés	Suivre les lignes directrices de surveillance pour personnes à risque	Peut être utile pour reclassification du variant	IARC: 95 à 99%
GENETIC VARIANT OF UNCERTAIN SIGNIFICANCE or VUS	3	Ne pas tester les apparentés	Suivi adapté à l'histoire familiale et autres facteurs de risques	Peut être utile pour reclassification du variant	IARC: 5.0 à 94.9%
GENETIC VARIANT, FAVOR POLYMORPHISM	2	Ne pas tester les apparentés	Traiter comme un résultat "No mutation detected"	Peut être utile pour reclassification du variant	IARC: 0.1 à 4.9%
NO MUTATION DETECTED or normal	1	Ne pas tester les apparentés	Traiter comme un résultat "No mutation detected"	Non indiqué	IARC: < 0.1%

Discordant Classifications Between Laboratories are Common

Analysis of 4,250 unique *BRCA1/BRCA2* variants with entries in ClinVar by one or more commercial labs

Table 1. Concordance between variant classifications from the reference laboratory and all database entries, as well asdatabase entries from contributing commercial laboratories

Concordance	ClinVar	GeneDx	Invitae	Ambry
Concordant—identical classification	73.2%	81.5%	85.4%	80.7%
Partially concordant—multiple classifications with \geq 1 concordant	12.3%	—		
Discordant—opposite classification	0.1%	0.1%	0%	0.1%
Discordant—RL uncertain classification	0.3%	0.7%	0.7%	1.2%
Discordant—DB uncertain classification	14.0%	17.7%	13.8%	18.1%
Proportion of VUSs with a definitive RL classification		42.5% (322/757)	63.2% (151/239)	56.9% (58/102)

Abbreviations: -, not applicable; DB, database; RL, reference laboratory; VUS, variant of uncertain significance.

Myriad provides definitive classifications for ~50% of *BRCA1* or *BRCA2* VUS reported by other labs

Gradishar *et al.*, Clinical Variant Classification: A Comparison of Public Databases and a Commercial Testing Laboratory. *The Oncologist.* 2017; epub ahead of print.

Once Variants are Identified, They Must be Correctly Interpreted (Classified)

Myriad's state-of-the-art variant classification program focuses on correctly classifying variants so that patients receive correct test results

Our Expertise

- Over 25 years of data
- Approximately 3 million patients tested
- Classification team of over 30 scientists

Our Methods

- Enhancement of publicly available classification methods
- We develop and validate our own powerful methods
- The FDA has reviewed our *BRCA1/2* classification program

Our Commitment

- We will never give up trying to reclassify variants of uncertain clinical significance (VUS)
- We will issue amended reports to patients for as long as we can find them

Our myVision[™] Variant Classification Team Classifies All Variants

Lab Directors Oversee test result quality and accuracy

Genetic Counselors

Communicate with patients and providers

PhD-Level Scientists

Clinical and population genetics, structural biology, biochemistry, bioinformatics, biostatistics

Knowledge Management

PhD scientists who curate the literature

Variant Specialists

Provide technical support to the team

Literature is Reviewed in Real-Time Throughout the Lifetime of a Variant

Before test launch, a complete literature search identifies previously reported variants, which are stored in our database with their associated papers.

A daily literature search is performed by PhD-level scientists to keep our database current.

Upon **first observation** of a variant at Myriad, targeted analysis verifies that critical papers were previously captured.

Daily monitoring of the literature is performed in case new literature, which may allow us to reclassify a VUS, becomes available.

During the **reclassification** process, a final search verifies that relevant data is considered.

Myriad Develops and Validates it Own Highly Accurate Reclassification Tools

Developed by Myriad

State-of-the-art reclassification tools are developed and validated by Myriad to be >99% accurate.

These tools are unique to Myriad and are critical for patients receiving correct and definitive test results.

Myriad invests in the science of variant reclassification.

Pheno Analysis MCO Analysis *In Trans* Haplotyping *inSite* RNA Lab Literature Population Data Segregation Structural *In Trans* Family Analysis

40%

Enhanced by Myriad

Publicly available tools are more error-prone.

Myriad enhances these tools and verifies their accuracy before use.

Use of these tools without modification may result in incorrect variant interpretation.

60%

Pheno is One of Myriad's Most Powerful and Accurate Reclassification Tools

Pheno measures the severity of personal and family cancer history associated with a particular variant.

Pheno Starts By Scoring Family History for a Single Proband Carrying the Variant of Interest

Pheno Combines the Severities of All Probands Carrying the Same Variant into a Pheno Score

Pathogenic Variant Proband scores are mostly severe, moderate scores are possible, benign scores are more rare

Benign Variant Proband scores are a more even mixture of severe, moderate and benign

Pheno Compares the Variant-Specific Score to Scores from 10,000 Known Pathogenic or Benign Variants

Pheno Typically Calls a Variant as Pathogenic or Benign, but Some Variants May Have Intermediate Cancer Risks

We Have Multiple Publications and Presentations Detailing Our Validations

Method	Shared	
Database Entries	Balmana J, et al.; 2016; JCO	Published
Standardized classification system	Eggington J, et al.; 2013; Clinical Genetics	Published
Pheno – History Weighting Algorithm	Morris B, et al.; 2016; BMC Genetics Pruss D, et al.; 2014; Breast Cancer Research and Treatment Bowles K, et al.; 2016; International Symposium on HBOC	Published
M-Co	Coffee B, et al.; 2015; ACMG	Presented
RNA splice site analysis	Warf B, et al.; 2015; ASHG	Presented
Structural biology analysis	Kerr I, et al.; 2016; International Symposium on HBOC	Presented
In trans co-occurrence and homozygosity	Fernandes P, et al.; 2015; ACMG Mundt E, et al.; 2016; International Symposium on HBOC	Presented
Segregation analysis	Eggington J, et al.; 2013; ACMG	Presented
Literature reviews	Esterling L, et al.; 2015; ASHG	Presented

In Contrast to Validated Classification Tools, the Accuracy of the ACMG Guidelines is Variable

ACMG STANDARDS AND GUIDELINES

Standards and guidelines for the interpretation of seque variants: a joint consensus recommendation of the Amer College of Medical Genetics and Genomics and the

Association for Molecular Pathology

Sue Richards, PhD¹, Nazneen Aziz, PhD^{1,K}, Sherri Bale, PhD¹, David Bick, MD¹, Soma Das,

Nue Richards, PhD.', Naznees, Aziz, PhD^{2,s}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, Julie Gastier-Foster, PhD^{2,4}, Wayne W, Grody, MD, PhD^{3,6,11}, Madhuri Hegde, PhD¹, Elaine Lyon, PhD¹, Elaine Spector, PhD^{1,4}, Karl Voelkerding, MD² and Heidi L. Rehm, Ph on behalf of the ACMG Laboratory Quality Assurance Committee

WHICH IS NO.

ACMG Classification Guidelines

- **NOT definitive: Open to human interpretation**
- NOT specific: Designed to cover all genes and diseases
- **NOT validated: Accuracy for any particular gene is** unknown
- Following the guidelines does not guarantee accuracy

The ACMG Guidelines Start with Categorizing Evidence by Strength

Myriad	Very Strong Very Strong	 Frameshift variant Nonsense variant Change in canonical splice site
Used by	Strong Strong	 Functional assays Same amino acid change at the same position is pathogenic Increased prevalence in cases over controls
ccuracy	Moderate Moderate	 Located in a functional domain Absent in a normal control population Different amino acid change at the same position is pathogenic
Lower A	Supporting Supporting	 In silico analyses – SIFT, PolyPhen, etc. Segregates with disease Reputable source classifies the variant

ACMG Then Combines Data to Make a Final Classification

Myriad uses high quality data for variant classification because the correct test result matters

ACMG Then Combines Data to Make a Final Classification

Myriad does not use lower quality data because it may result in incorrect classifications and inappropriate medical management

Following the ACMG Guidelines Does Not Guarantee Accuracy BRCA2 E3002D can be Classified as Likely Pathogenic Based on Lower Quality Evidence

BRCA2 E3002D

BRCA2 E3002D can also be classified as Likely Benign Based on Lower Quality Evidence

BRCA2 E3002D

Two different classifications for the same variant using the same guidelines!

High Quality Validated Data Gives the Correct Classification

We Offer Free RNA Analysis if it May Allow Us to Reclassify a VUS to Pathogenic or Benign

MSH6 R1334Q (c.4001G>A) is located at the last base of exon 9 and may result in abnormal RNA splicing

Myriad requested an RNA sample from a patient with this variant

MSH6 R1334Q: RNA Analysis Shows that the Patient Produces an Abnormal cDNA Product

MSH6 R1334Q: Sequencing Analysis Confirms that the R1334Q Causes Abnormal mRNA Splicing

ACMG is Our Foundation, But We Go Above and Beyond for Our Patients

ACMG Classification Guidelines

Our Reclassification Efforts Benefit Many Patients and Their Families

In 2016, We Sent 23,337 Amended Reports with More Definitive Variant Classifications

23,337 Patients and Countless Family Members Will Benefit from More Clinically Actionable Test Results

Myriad is Committed to Patients and Providers Throughout the Entire Testing Process

Pre-Testing Support

• We will work with you to provide education and support before testing

State of the Art Variant Interpretation

- World-class variant team
- Powerful and unique classification tools
- Lifetime commitment to patients

State of the Art Variant Identification

- High quality technologies
- Optimization and validation
- Unusual Cases Customization allows patients receive definitive answers

Post-Testing Support

- Clinical management support: Medical Management Tool
- Patient and provider support after testing is completed

DNA Repair Pathways

Homologous Recombinational Repair

PARP Inhibitors

Homologous Recombination Deficiency

Patient 1: PARP Inhibitor / HRR Proficient

Patient 2: PARP Inhibitor / HRR Deficient

HRR Pathway

Pennington et al. Clin Cancer Res (2013) 20(3):764-75.

A Better Approach: Look at the Genomic Phenotype That Results From HRD

Watkins et al. Breast Ca Res (2014) 16:211.

A Better Approach: Look at the Genomic Phenotype That Results From HRD

Abkevich et al. Br J Cancer (2012) 107:1776–1782. Popova et al. Cancer Res (2012) 72(21):5454-62. Birkback et al. Cancer Discov (2012) 2(4):366-75.

Example of myChoice HRD Genomic Profile

HRD Score = 3 HRD Negative

HRD Score = 81 HRD Positive

myChoice HRD Biomarkers

Loss of Heterozygosity (LOH): Presence of a single allele

Telomeric Allelic Imbalance (TAI): A discrepancy in the 1:1 allele ratio at the end of the chromosome (telomere)

Large-Scale State Transitions (LST): Transition points between regions of abnormal and normal DNA or between two different regions of abnormality

Single Measures of HRD are Insufficient

Hennessy BT, et al. *J Clin Oncol*. 2010; 28:3570. TCGA Research Network. *Nature*. 2011; 474:6609. Bannerjee et al. *Ann Oncol*. 2013;24(3):679.

3

Ovarian Cancer Score Distribution

Mills et al. SGO 2016

Review of the NOVA Study

myChoice HRD – NOVA Study Results

Homologous Recombination Deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple-negative breast cancer (TNBC): A pooled analysis

Telli ML et al. Presented at SABBCS, December 10, 2015.

Trial	Ν	Weeks of Therapy	Neoadjuvant Regimen
Gepar Sixto ¹	101	18	Paclitaxel, non-pegylated liposomal doxorubicin, carboplatin and bevacizumab
PrECOG 0105 ²	72	12-18	Carboplatin, gemcitabine, and iniparib
NCT005803333	32	12	Cisplatin with bevacizumab
NCT013725794	26	12	Carboplatin and eribulin
NCT00148694 ⁵	18	12	Cisplatin
TBCRC 0086	18	12	Carboplatin, nab-paclitaxel, with or without vorinostat

267 TNBC patients with multiple neoadjuvant therapies

Homologous Recombination Deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple-negative breast cancer (TNBC): A pooled analysis

Telli ML et al. Presented at SABBCS, December 10, 2015.

HR deficiency and response							
Variable	Category	Unadjusted OR	Adjusted OR	95% CI	P value		
HR deficiency status	Non-deficient (ref)	1.0	1.0		<0.0001		
	Deficient	5.11	4.64	2.32-9.27			
Age	Increment of 10 years		0.81	0.62-1.06	0.109		
Intended Therapy	12 weeks (ref)		1.0		0.291		
Duration	18 weeks		2.38	0.42-13.47			
Clinical Stage	l (ref)		1.0				
	П		0.41	0.16-1.09	0.118		
	III		0.31	0.09-1.08			
Trial	Gepar Sixto (ref)		1.0		0.002		
	Others		0.37-2.38				

Adjusted OR of 4.64 based on analysis of *BRCA1/2* positive or negative patients Other clinical parameter measurements not significant

Homologous Recombination Deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple-negative breast cancer (TNBC): A pooled analysis

Telli ML et al. Presented at SABBCS, December 10, 2015.

HR deficiency in BRCA negative and response						
Variable	Category	Unadjusted OR	Adjusted OR	95% Cl	P value	
HR Deficiency Status	Non-deficient (ref)	1.0	1.0		<0.0001	
	Deficient	4.37	4.55	2.12-9.74		
Age	Increment of 10 years		0.75	0.54-1.05	0.084	
Intended Therapy Duration	12 weeks (ref)		1.0		0.316	
	18 weeks		2.96	0.24-10.07		
Clinical	l (ref)		1.0			
Stage	II		0.55	0.11-1.33	0.600	
	III		0.70	0.13-3.47	-	
Trial	Gepar Sixto (ref)		1.0		0.004	
	Others		0.30 - 4.78			

Adjusted OR of 4.55 based on analysis of **BRCA1/2 negative patients** Other clinical parameter measurements not significant

myChoice HRD Report

Diplomate ABMG Laboratory Director

Myriad Genetic Laboratories, Inc. | 320 Wakara Way, Salt Lake City, Utah 84108 | PH: 877-283-6709 FX: 801-883-8998 myriad. Myriad, the Myriad logo, myChoice logo, and Myriad myChoice HRD are either trademarks or registered trademarks of Myriad CTRL 0762 Page 1 of 2

Laboratory Director

Myriad Genetic Laboratories

Laboratory Director

The Muriad myChoice[®] HRD test was developed and its performance characteristics were determined by Myriad Genetic Laboratories, Inc. The EDA has determined The Mynak mycholice: "Hist leak was developed and its performance characteristics were determined by Mynak that clearance or approval is not necessary. Myriad is certified under the Clinical Laboratory Improvement Amer complexity clinical laboratory testing. idments of 1988 (CLIA-88) as gualified to perform high

Myriad Genetic Laboratories, Inc. | 320 Wakara Way, Salt Lake City, Utah 84108 | PH: 877-283-6709 FX: 801-883-8998 Myriad. Myriad logo, myChoice, the myChoice logo, and Myriad myChoice HRD are either trademarks or registered trademarks of Myria Genetics, Inc., in the United States and other jurisdictions. © 2016 CTRL 0762 Page 2 of 2

DECISION